WORLD'S RESOURCES AND ENVIRONMENT


Economic growth and prosperity depend partly on the availability of natural resources and the quality of the environment. There is growing concern that the consumption of inputs and goods in developed countries, and increasingly in developing countries, is depleting the world’s stock of resources and irreparably degrading the natural environment. What can be done to effectively manage resources and protect the environment? Optimists believe that economic growth in a market economy can continue indefinitely; they see relatively few limits in raw materials and great gains in technological productivity. In contrast, pessimists assert that there are inherent limits to growth imposed by the finiteness of the earth—by the fact that air, water, minerals, space, and usable energy sources can be exhausted or ecosystems overloaded. They believe these limits are near and, as evidence, point to existing food, mineral, and energy shortages and to areas now beset by deforestation and erosion. How can we create a habitable and sustainable world for generations to follow? One solution is to transform our present growth-oriented lifestyle, which is based on a goal of ever-increasing production and consumption, to a balance-oriented lifestyle designed for minimal environmental impact. A balance-oriented lifestyle would include an equitable and modest use of resources, a production system compatible with the environment, and appropriate technology. The aim of a balance-oriented world economy is maximum human well-being with a minimum of material consumption. Growth occurs, but only growth that truly benefits all people, not just the elite few. However, what societies, rich or poor, are willing to dismantle their existing systems of production to accept a lifestyle that seeks satisfaction more in quality and equality than in quantity and inequality? This chapter deals with the complex components of the population–resources issue. Have population and economic growth rates been outstripping food, minerals, and energy? What is likely to happen to the rate of demand for resources in the future? Could a stable population of 10 billion be sustained indefinitely at a reasonable standard of living utilizing currently known technology? These are the critical questions with which this chapter is concerned.

RESOURCES AND POPULATION


Popular opinion in the industrial West generally appreciates the need to reduce population growth but overlooks the need to limit economic growth that exploits resources. Most people in the economically developed world suffer from a view that resources are limitless and do not appreciate that our rapid consumption of them ultimately threatens our affluent way of life. The First World is, in short, liquidating the resources on which our way of life was built. The growth of some developing countries is aggravating the situation. Their growing populations put increasing pressure on resources and the environment, and many aspire to affluence through Western-style urban industrialization that depends on the intensive use of resources. Poor countries generally do not have the means for running the highenergy production and transportation systems manifest in the industrial West. The production of a middle-class basket of luxury goods (e.g., cars) requires six times as much in resources as a basket of essential or basic goods (e.g., food). The expansion of gross domestic product (GDP) through the production of middle-class baskets means that only a minority of people in poor countries would enjoy the fruits of economic growth. Resource constraints prevent the large-scale production of consumer goods for the growing populations of the developing countries. However, numerous measures of material well-being (e.g., per capita incomes, calories consumed, life expectancy) show that people in most, but not all, countries are better off today than their parents were. But there are problems with this optimistic assessment. These improvements are based on averages; they say nothing about the distribution of material well-being. Another difficulty is that the world may be achieving improvements in material well-being at the expense of future generations. This would be the case if economic growth were using up the world’s resource base or environmental carrying capacity faster than new discoveries and technology could expand them.

Carrying Capacity and Overpopulation

The population–resources problem is much debated, particularly during periods of economic shortages and rising prices. Neo-Malthusian pessimists believe that the world will eventually enter a stationary state at carrying capacity, which is the maximum population that can be supported by available resources. They point to recurring food crises and famines in Africa as a result of overpopulation. However, carrying capacity, an idea borrowed from ecology, is simplistic in that it ignores the historical, political, and technological context in which the production and consumption of goods occurs. Human beings are not mindless products of an unchanging nature and are capable of modifying their environment and altering the constraints and opportunities it presents. On the other hand, optimists believe in the saving grace of modern technology. Technological advances in the past 200 years have raised the world’s carrying capacity, and future technical innovations as well as the substitution of new raw materials for old hold the promise of raising carrying capacity still further. The answer to the population–resources problem also depends on the standard of living deemed acceptable. To give people a minimal quality of life instead of one resembling the American middle class would require vast quantities of additional resources. The establishment of an economy that provides for the basics of life—sufficient food, housing, education, transportation, and health care — depends on our capacity to develop alternatives to the high-energy, material-intensive production technologies characteristic of the industrial West. Already, there are outlines of a theory of resource use suited to the needs of a basic goods economy. Some of the main ideas are: (1) the adoption of organic agriculture; (2) the use of renewable sources of energy; (3) the use of appropriate technology, labor-intensive methods of production, and local raw materials; and (4) the decentralization of production in order to minimize the transport of materials and their associated carbon footprints. These productive forces would minimize the disruption of ecosystems and engage the unemployed in useful, productive work. Typically, economies that produce essential goods for human consumption face neither excessive unemployment nor overpopulation. Moreover, secure supplies of basic goods provide a strong motivation for reducing population size, as families no longer require many children to ensure economic prosperity.

TYPES OF RESOURCES AND THEIR LIMITS

All economic development comes about through the use of human resources (e.g., labor power, skills, and intelligence). In order to produce the goods and services people demand in today’s global economy, we need to obtain natural resources. What are natural resources and what are their limits?

Resources and Reserves

Natural resources have meaning only in terms of historically specific technical and cultural appraisals of nature and are defined in relation to a particular level of development.

Renewable and Nonrenewable Resources

There is a major distinction between nonrenewable and renewable resources. Nonrenewable resources consist of finite masses of material, such as fossil fuels and metals, which cannot be used without depletion. They are,for all practical purposes, fixed in amount, or in some cases, such as soils, they form slowly over time. Consequently, their rate of use is important. Large populations with high per capita consumption of goods deplete these resources fastest. Many nonrenewable resources are completely altered or destroyed by use; petroleum is an example. Other resources, such as iron, are available for recycling. Recycling expands the limits to the sustainable use of a nonrenewable resource. At present, these limits are low in relation to current mineral extraction. Renewable resources are those resources capable of yielding output indefinitely without impairing their productivity. They include flow resources such as water and sunlight and stock resources such as soil, vegetation, fish, and animals. Renewal is not automatic, however; resources can be depleted and permanently reduced by misuse. Productive fishing grounds can be destroyed by overfishing. Fertile topsoil, destroyed by erosion, can be difficult to restore and impossible to replace. The future of agricultural land is guaranteed only when production does not exceed its maximum sustainable yield. The term maximum sustainable yield means maximum production consistent with maintaining future productivity of a renewable resource. In our global environment, the misuse of a resource in one place affects the well-being of people in other places. The misuse of resources is often described in terms of the tragedy of the commons, a term coined by biologist Garrett Hardin in 1968. This metaphor refers to the way public resources are ruined by the isolated actions of individuals, which occurs when the costs of actions are not captured in market prices. Originally it referred to the tendency of shepherds to use common grazing land; as each one sought as much of the commons as possible, it became overgrazed. Similarly, people who fish are likely to try to catch as many fish as they can, reasoning that if they don’t, others will. Thus, the tragedy of the commons exemplifies a market failure, a problem generated by individual actors who behave “rationally” but collectively create an irrational and self-destructive outcome. Similarly, dumping waste and pollutants in public waters and land or into the air is the cheapest way to dispose of worthless products. Firms are generally unwilling to dispose of these materials by more expensive means unless mandated by law. Sometimes resources are unavailable, not because they are depleted but because of politics. Resources are under the control of sovereign nation-states. Many wars in the twentieth century have been resource wars. For example, Japan invaded Korea and Taiwan in the 1890s largely in order to obtain arable land and coal. The Iraqi invasion of Kuwait in 1990 and the U.S. invasion of Iraq in 2003 were largely motivated by concerns over the region’s oil supplies. In the Middle East, fierce national rivalries make water a potential source of conflict: While some parts are blessed with adequate water supplies, most of the region is insufficiently supplied. Some observers predict that political tension over the use of international rivers, lakes, and aquifers in the Middle East may escalate to war in the next few years.

Food Resources 

Thanks to scientific advances in farming, world food production has been increasing faster than population. While there is sufficient food to feed everyone in the world, there are huge geographical variations in people’s access to a sufficient number and quality of calories. The populations of the industrialized world are generally well fed; indeed, in the United States, the major dietary problem is an overabundance of calories and an epidemic of obesity. In the developing world, in contrast, hundreds of millions of people worldwide still go hungry daily. With demand for food expected to grow at 4% per year over the next 20 to 30 years, the task of meeting that need will be more difficult than ever before. A record explosion in the world’s population coupled with the problem of poverty threatens the natural resources on which agriculture depends, such as topsoil. To make matters worse, environmental degradation perpetuates poverty, as degraded ecosystems diminish agricultural returns to poor people. The gulf between the well fed and the hungry is vast. Average daily calorie consumption is 3300 in developed countries and 2650 in developing countries. But these are average figures. There are people in the developed world who go hungry and some people in Africa with plenty to eat. Averages mask the extremes of undernutrition—a lack of calories—and overconsumption. Even with a high calorie satisfaction, people may suffer from chronic malnutrition—a lack of enough protein, vitamins, and essential nutrients. The most important measure in assessing nutritional standards is the daily per capita availability of calories, protein, fat, calcium, and other nutrients. In the world today, the sharpest nutritional differences are not from country to country or from one region to another within countries. They are between rich and poor people. The poor of the earth are the hungry, and those with the least political power often suffer in terms of an insufficient food supply. Hunger among the poor of the world is often attributed to deforestation, soil erosion, water-table depletion, the frequency and severity of droughts, and the impact of storms such as hurricanes. Although the environment does have a bearing on the food problem, it has limited significance compared to the role of social conditions such as war and a world economy whose rules are tilted against the impoverished. Subsidized agricultural exports from the United States, for example, have bankrupted millions of farmers in the developing world, reducing those countries’ ability to feed themselves.

Population Growth

Population growth is one of many causes of the food problem, and Malthusian views often influence the public’s opinion of this issue. However, presently, at the global level, there is no food shortage. In fact, world food production grew steadily from 1961 to 2008. Even over the next several decades, production increases, assuming continuing high investments in agricultural research, are likely to be sufficient to meet effective demand and rising world population. However, some are more pessimistic about future world food production. They argue that food production will be constrained by the limits to the biological productivities of fisheries and rangelands, the fragility of tropical and subtropical environments, massive overfishing of the world’s oceans, the increasing scarcity of fresh water, the declining effectiveness of additional fertilizer applications, and social disintegration in many developing countries. The success of global agriculture has not been shared equally. In Africa, per capita food production has not been able to keep up with population growth. By contrast, Asia, and to a lesser extent Latin America, have experienced tremendous successes in per capita terms. The reasons for this are complex and have to do with the relative equality in patterns of land ownership, government policies toward farmers (e.g., price ceilings on agricultural crops), the respective ability of countries to build infrastructures and extend credit to small farmers, and the role of different states in the world economy. The food and hunger problem is most severe in sub-Saharan Africa, a region that has long suffered from centuries of colonial misrule, corrupt and uncaring governments,artificial political boundaries that fuel tribal conflicts and secessionist wars, rapid population growth, and lack of foreign investment. Fifteen countries are experiencing exceptional food emergencies. Of the 28 countries with food-security problems, 23 are in sub-Saharan Africa. Indeed, famine, the most extreme expression of poverty, is now mainly restricted to Africa. The fact that famine has been declining for decades in Latin America and Asia suggests that famine can be eliminated. But how? Certainly, bringing an end to Africa’s multiple civil wars would go a long way toward eradicating famine. Africa has witnessed countless brutal conflicts that have killed tens of millions of people, most recently in the Congo. Such conflicts divert resources from civilian use, interrupt the production of crops, terrorize populations, destroy the infrastructure, destabilize markets, and complicate the stability of the governments, creating famine and prohibiting the flow of development aid. But peace is not in itself a sufficient condition for removing acute hunger. Appropriate policies and investments are needed to stimulate rural economic growth that underpins food security and to provide safety-net protection for the absolute poor. Rural infrastructure development, credit to farmers, and land redistribution are also necessary steps in this regard. Price controls on food crops create disincentives to produce, and heavily subsidized food imports from the developed world, especially the United States, bankrupt farmers. Often elites in the developing world care more about their foreign bank accounts than the well-being of their own populations. The pace of urbanization in the developing countries has also contributed to the food problem. In recent decades, hundreds of millions of people who previously lived in rural areas and produced some food have relocated to urban areas, where they must buy food. As a result of urbanization, there is a higher demand for food in the face of lower supply.

Poverty

The inequitable allocation of food is directly related to poverty, the single greatest cause of the hunger problem. Hungry people are inevitably poor people who lack the purchasing power to feed themselves. Under capitalism, food goes to customers who can afford it, not to where it is needed most. During famines, the prices of foods rise dramatically, with disastrous results for the poor. From the perspective of the world market, where food is produced is immaterial as long as costs are minimized and a profitable sale can be made. Thus, in the midst of hunger, food may be exported for profit. Since the populations of the developed world can afford to pay much more for food than their counterparts in less developed countries, it is not surprising that the market fails to include the poor. Solving the world food problem is ultimately a matter of alleviating poverty in developing nations. This is no easy task, and while parts of the developing world have made great economic strides over the past 40 years (e.g., East Asia), much of Africa and parts of India and Latin America remain mired in poverty and hunger.

Maldistribution

The problem of world food distribution has three components. First, there is the problem of transporting food from one place to another. Although transport systems in developing countries lack the speed and efficiency of those in developed countries, they are not serious impediments under normal circumstances. The problem arises either when massive quantities of food aid must be moved quickly or when the distribution of food is disrupted by political corruption and military conflict. Second, serious disruptions in food supply in developing countries are traceable to problems of marketing and storage. Food is sometimes hoarded by merchants until prices rise and then sold for a larger profit. Also, much food in the tropics is lost due to poor storage facilities. Pests such as rats consume considerable quantities, and investments in concrete storage containers can help to minimize this loss. A third aspect of the distribution problem is in the inequitable allocation of food. Only North America, Australia, and Western Europe have large grain surpluses. But food grain is not always given when it is most needed. Food aid shipments and grain prices are inversely related. Thus, U.S. food aid was low around 1973, a time of major famine in the Sahel region of Africa, because cereal prices were at a peak. Closely associated with poverty as a cause of hunger in developing countries is the structure of agriculture, including land ownership. Land is frequently concentrated in the hands of a small elite. In Bangladesh, less than 10% of households own more than 50% of the country’s cultivable land; 60% of Bangladesh’s rural families own less than 2%. A similar situation applies in Latin America. Many rural residents own no land at all. They are landless laborers who depend on extremely low wages for their livelihoods. But without land, there is often no food.

Civil Unrest and War

Political conflict is an important cause of hunger and poverty. Occasionally, governments withhold food to punish rebellious populations. Devastating examples of depriving food to secessionist areas include the government in Nigeria starving the Biafrans in the 1970s and the government  in Ethiopia starving the Eritreans into submission, with 6 million people dying in the process. In Sudan, the Arab government’s genocide against the African population in Darfur has led to the starvation of millions. In Zimbabwe, the government of Robert Mugabe has systematically denied food to his political opponents in order to quash domestic opposition. Civil wars, which are frequent in developing countries whose political geographies were shaped by colonialism and which have unstable governments, devastate agricultural production. Without a stable political environment, the social mechanisms necessary to produce and distribute food to the hungry cannot operate.

Environmental Decline

As population pressure increases on a given land area, the need for food pushes agricultural use to the limits, and marginal lands, which are subject now to desertification and deforestation, are brought into production. Removal of trees allows a desert to advance, because the windbreak is now absent. The cutting of trees also lowers the capacity of the land to absorb moisture, which diminishes agricultural productivity and increases the chances of drought. Desertification and deforestation are symptoms as well as causes of the food problem in developing countries. Natural resources are mined by the poor to meet the food needs of today; the lower productivity resulting from such practices is a concern to be put off until tomorrow.

Government Policy and Debt

In many developing countries, government policies have emphasized investment in their militaries and cities at the expense of increasing agricultural production. In addition, some governments in Africa have provided food at artificially low prices in order to make food affordable in cities. While this practice keeps labor affordable for multinational corporations and placates the middle class, it robs farmers of the incentive to farm. Farmers cannot make a living from artificially low commodity prices. The average debt of many developing countries runs into the billions. In 2008, aggregate debt of African countries stood at $260 billion. Simply put, African countries have no surplus capital to invest in their infrastructure or food production systems. Instead, they have to enforce austerity, reducing levels of government services in support of economic growth, particularly agricultural growth. Debt repayments subsume a large share of foreign revenues, decreasing funds available for investment. In recent decades, agriculture in developing countries has expanded. This expansion is in the export sector, not in the domestic food-producing sector, and it is often the result of deliberate policy. Governments and private elites have opted for modernization through the promotion of export-oriented agriculture. The result is the growth of an agricultural economy based on profitable export products and the neglect of those aspects of farming that have to do with small farmers producing food for local populations. Imports from the developed world, particularly the United States, also exacerbate food problems. For example, after the passage of the North American Free Trade Agreement (NAFTA) in 1994, massive U.S. exports of government-subsidized corn caused the price of corn in Mexico to fall by 70%, bankrupting 2 million Mexican farmers. All over the world, farmers protest subsidized U.S. grain exports (produced by a country that celebrates the “free market”) for undermining local food-producing systems. The issue has also become a major obstacle in world trade negotiations.

INCREASING FOOD PRODUCTION

Yield increases will be the major source of future food production growth. These can be achieved through the expansion of arable land and increased crop intensity. The result of these methods of increasing food supply would be to put additional pressures on land and water resources and contribute significantly to human-made sources of greenhouse gases.

Expanding Cultivated Areas

The world’s potentially farmable land is estimated to be about twice the present cultivated area. Vast reserves are theoretically available in Africa, South America, and Australia, and smaller reserves in North America, Russia, and Central Asia. However, many experts believe that the potential for expanding cropland is disappearing in most regions because of environmental degradation and the high cost of developing infrastructure in remote areas. About half of the world’s potentially arable land lies within the tropics, especially in sub-Saharan Africa and Latin America. Much of this land is under forest in protected areas, and most of it suffers from soil and terrain constraints as well as excessive dryness. In Asia, two-thirds of the potentially arable land is already under cultivation; the main exceptions are Indonesia and Myanmar. South Asia’s agricultural land is almost totally developed. The expansion of tropical agriculture into forest and desert environments contributes to deforestation and desertification. Since World War II, half of the world’s rain forests in Africa, Asia, and Latin America have disappeared. Conversion of this land to agriculture has entailed high costs, including the loss of livelihoods for the people displaced, the loss of biodiversity, increased carbon dioxide emissions, and decreased carbon storage capacity. Desertification—the growth of deserts due to humanly caused factors, typically on the periphery of natural deserts—threatens about one-third of the world’s land surface and the livelihood of nearly a billion people. Many of the world’s major rangelands are at risk. The main factor responsible for desertification is overgrazing, but deforestation (particularly the cutting of fuel wood), overcultivation of marginal soils, and salinization caused by poorly managed irrigation systems are also important influences. Deforestation and desertification are destroying the land resources on which the development of the developing countries depends.

Raising the Productivity of Existing Cropland


The quickest way to increase food supply is to raise the productivity of land under cultivation. Remarkable  in agricultural yields have been achieved in developed countries through the widespread adoption of new technologies. Corn yields in the United States are a good example. Yields expanded rapidly with the introduction of hybrid varieties, herbicides, and fertilizers. Much of the increase in yields came through successive improvements in hybrids. The approach for increasing yields in developed countries has been adopted in developing countries. One approach is known as the Green Revolution, started by Nobel-laureate American agronomist Norman Borlaug in the 1960s, in which new high-yielding varieties of wheat, rice, and corn are developed through plant genetics, including crops that grow more quickly, perhaps yielding several harvests per year, are more pest and drought resistant, and have higher protein content. The Green Revolution has had enormous impacts in Asia and Mexico, increasing the food supply, but it is not a panacea. It depends on machinery, for which the poor lack sufficient capital to buy. It depends on new seeds, which poor farmers cannot afford. It depends on chemical fertilizers, pesticides, and herbicides, which have contaminated underground water supplies as well as streams and lakes. It depends on large-scale, one-crop farming, which is ecologically unstable because of its susceptibility to pestilence. It depends on controlled water supplies, which have increased the incidence of malaria, cholera, schistosomiasis, and other diseases. It is confined largely to a group of 18 heavily populated countries, extending across the tropics and subtropics from South Korea to Mexico. It is also benefiting countries that include half of the world’s population. This approach involves the widespread application of artificial fertilizers, an increasingly common practice throughout the developing world. Politically, the Green Revolution promises more than it can deliver. Its sociopolitical application has been largely unsatisfactory. Even in areas where the Green Revolution has been technologically successful, it has not always benefited large numbers of hungry people without the means to buy the newly produced food. It has benefited mainly Western-educated farmers, who were already wealthy enough to adopt a complex integrated package of technical inputs and management practices. Farmers make bigger profits from the Green Revolution when they purchase additional land and mechanize their operations. Some effects of labor-displacing machinery and the purchase of additional land by rich farmers include agricultural unemployment, increased landlessness, rural-to-urban migration, and increased malnutrition for the unemployed who are unable to purchase the food produced by the Green Revolution. The Green Revolution generated substantial increases in agricultural output worldwide. However, world hunger remains a serious problem, indicating that the problem is not so much one of food production, but of food demand in the economic sense (i.e., purchasing power). Unfortunately, the Green Revolution does nothing to increase the ability of the poor to buy food. Hunger is a complex and intractable problem in large part because it is so closely tied to questions of poverty and economic development, not simply increasing agricultural productivity. The Green Revolution has helped to create a world of more and larger commercial farms alongside fewer and smaller peasant plots. However, given a different structure of land holdings and the use of appropriately intermediate technology, the Green Revolution could help developing countries on the road toward agricultural self-sufficiency and the elimination of hunger. Intermediate technology is a term that means low-cost, small-scale technologies intermediate between primitive stick-farming methods and complex agroindustrial technical packages.

Creating New Food Sources

Expanding cultivated areas and raising the productivity of existing cropland are two methods of increasing food supply. A third method is the identification of new food sources. There are three main ways to create new food sources: (1) cultivating the oceans, or mariculture; (2) developing high-protein cereal crops; and (3) increasing the acceptability and palatability of inefficiently used present foods.

Cultivating the Oceans

Fishing and the cultivation of fish and shellfish (aquaculture) from the oceans is not a new idea. At first glance, the world seems well supplied with fisheries because oceans cover three-fourths of the earth. However, fish provide a very small proportion—about 1%—of the world’s food supply. World fish consumption has increased more rapidly than the population, and even exceeded beef as a source of animal protein in some countries. Today, the oceans are in dire threat of being heavily overfished, with catastrophic implications for marine ecosystems as well as the future world food supply. Over the past 30 years, the total tonnage of fish caught by commercial fishing fleets has leveled off and declined as a result of overfishing. Overfishing has been particularly acute in the North Atlantic and Pacific oceans. Countries such as Iceland and Peru, whose economies rely heavily on fishing, are sensitive to the overfishing problem. Peru’s catch of its principal fish, the anchovy, has declined by over 75% because of overfishing. The Peruvian experience demonstrates that the ocean is not a limitless fish resource, as did the quest for whales a century earlier. Indeed, if current fish consumption levels continue, the ocean’s ecosystems are likely to experience severe stress, or collapse, with dire consequences not only for the world environment but for the human food supply as well. An alternative to commercial fishing fleets, which employ sophisticated techniques but catch only what nature has provided, is fish farming. Mariculture is now expanding rapidly and accounts for 11% of the world’s fish caught yearly. The cultivation of food fish such as catfish, trout, and salmon is big business in the United States, Norway, Japan, and other fishing countries.

High-Protein Cereals

Another source of future food production rests in higher-protein cereal crops. Agricultural scientists seek to develop high-yield, high-protein cereal crops in the hope that development of hybrid seeds will be able to help the protein deficiency of people in developing countries who do not have available meats from which to gain their protein needs, as do people in developed countries. Fortification of present rice, wheat, barley, and other cereals with minerals, vitamins, and protein-carrying amino acids is an approach that also deserves attention. This approach is based on the fortified food production in developed countries and stands a greater chance of cultural acceptance because individual food habits do not necessarily need to be altered. But developing countries rely on unprocessed, unfortified foods for 95% of their food intake. Large-scale fortification and processing would require major technological innovation and scale economies to produce enough food to have an impact on impoverished societies.

More Efficient Use of Foods

In many developing countries, foods that satisfy consumer preferences as well as religious taboos and cultural values are becoming limited. The selection of foods based on social customs should be supplemented with information concerning more efficient use of foods presently available. An effort should be made to increase the palatability of existing foods that are plentiful. Fish meal is a good example. Presently, one-third of the world’s fish intake is turned into fodder for animals and fertilizer. Fish meal is rich in omega-3 fatty acids and amino acids necessary for biological development. However, in many places, the fish meal is not used because of its taste and texture. Another underused food resource is the soybean, a legume rich in both protein and amino acids. Most of the world’s soybeans wind up being processed into animal feed or fertilizer and into nondigestible industrial materials. World demand for tofu and other recognizable soybean derivatives is not large. By contrast, hamburgers, hot dogs, soft drinks, and cooking oils made partially from soybeans are more acceptable.

A Solution to the World Food Supply Situation

As we have emphasized, there is a widely shared belief that people are hungry because of insufficient food production. But the fact is that food production is increasing faster than population, and still there are more hungry people than ever before. Why should this be so? It could be that the production focus is correct, but soaring numbers of people simply overrun these production gains. Or it could be that the diagnosis is incorrect—scarcity is not the cause of hunger, and production increase, no matter how great, can never solve the problem. The simple facts of world grain production make it clear that the overpopulation/scarcity diagnosis is incorrect. Present world grain production can more than adequately feed every person on earth. Ironically, the focus on increased production has compounded the problem of hunger by transforming agricultural progress into a narrow technical pursuit instead of the sweeping social task of releasing vast, untapped human resources. We need to look to the policies of governments in developing countries to understand why people are hungry even when there is enough food to feed everyone. These policies influence the access to knowledge and the availability of credit to small farmers, the profitability of growing enough to sell a surplus, and the efficiency of marketing and distributing food on a broad scale. The fact is that small, carefully farmed plots are more productive per unit area than large estates because the families that tend to them have more at stake and invest as much labor as necessary to feed themselves when they can. Yet, despite considerable evidence from around the world, government production programs in many developing countries ignore small farmers. They rationalize that working with bigger production units is a faster road to increased productivity. In the closing years of the twentieth century, many agricultural researchers, having gained respect for traditional farming systems, agree with this conclusion.

By Frederick P. Stutz (San Diego State University) and Barney Warf (University of Kansas) in "The World Economy" - geography, business, development, Prentice Hall U.S.A,2012, excerpts 97-107. Adapted and illustrated (using book graphs) to be posted by Leopoldo Costa.

0 Response to "WORLD'S RESOURCES AND ENVIRONMENT"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel